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We study the influence of an external electromagnetic field of 1.8 GHz in the formation or disaggregation of
long rouleau of identical erythrocyte cells. In particular we calculate the variation of the transmembrane
potential of an individual erythrocyte illuminated by the external field due to the presence of the neighboring
erythrocytes in the rouleau, and compare the total electric energy of isolated cells with the total electric energy
of the rouleau. We show that the polarization of the external electromagnetic field plays a fundamental role in
the total energy variation of the cell system, and consequently in the formation or disaggregation of rouleau.
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I. INTRODUCTION

It is well known that erythrocytes in low shear flow can
aggregate and form a close-packed stack of cells, the so-
called rouleau. These red cells that appear stacked like coins
can be easily observed using a dark field microscope. �Rou-
leau must not be confused with erythrocyte aggregation, also
known as blood sludge; this last condition is one step worse
than rouleau and it is often seen in patients with degenerative
diseases.� The length of an erythrocyte rouleau �up to
50 �m� is determined by the repulsive force between the
negatively charged cells, by the cell-to-cell adhesion of their
flat surfaces induced by plasma proteins and by the disaggre-
gating shear force generated by blood flow �1�. Under nor-
mal circumstances the blood flow is sufficient to disperse
erythrocyte rouleau, and this process is essential for normal
tissue perfusion. However, in low-flow states and other
pathological conditions rouleau of erythrocytes may contrib-
ute to circulatory disorders, in particular microcirculation,
leading to occlusion of microvessels. Rouleau can also dras-
tically hinder oxygen transportation, resulting in a decrease
of circulation which may cause chronic fatigue, poor diges-
tion, and edema. The importance of these rouleau effects
explains why they attract considerable research interest.

Skalak et al. �2� have studied the formation of rouleau
with flat contact surfaces between the erythrocytes, and
therefore limited to cell shape geometries with equatorial
mirror symmetry. More recently and based on the computa-
tional approach that Bozic et al. �3� developed for the study
of lipid membranes, Derganc et al. �4� have extended the
work of Skalak et al. to include all possible axisymmetric
equilibrium shapes of erythrocytes deformed from their nor-
mal biconcave shape, including mirror-symmetric discocytes
and cup-shaped stomatocytes in a long rouleau of identical
cells.

If situations such as high-shear flow or echinocyte trans-
formation are not considered, the deformations of erythro-
cytes in the rouleau formation are very small and the skel-
eton elasticity can be safely omitted from the analysis �5�.
Therefore, the equilibrium state of erythrocytes in the rou-
leau corresponds to the minimum of the sum of the adhesion

energy, the elastic energy of their membranes �1� and the
basic electric energy �due to the resting transmembrane po-
tential�. From the previous statement it can be inferred that
rouleau formation will be favored if the total energy of an
erythrocyte cell system is decreased. This energy variation
may originate from different sources both internal and exter-
nal to the cell system. In particular, an electromagnetic �EM�
field impinging on a biological structure may constitute a
main external source.

Exposure of a biological cell to EM fields can produce a
variety of profound biochemical and biophysical responses.
Weak electric field effects have generally been attributed to
field interaction with either membrane or glycocalix constitu-
ents. Ongoing research about possible mechanisms of inter-
action of EM fields with biological tissues and cells in cul-
ture has motivated a growing need for accurate models
describing the electric behavior of cells exposed to these
fields. The magnitude of transmembrane potential �TMP�
�the voltage “drop” or the difference in voltage between one
face of a bilayer and its immediate opposite face� and the
deposited energy are basic issues to understand the relation
between the exposition to fields and the subsequent physi-
ological reactions at the cell level �6,7�. The transmembrane
potential plays a very important role in all cell activity as it
controls the transmembrane flow of charged solutes and the
activity of voltage-gated ion channels. A variation of the
transmembrane potential leads to a local distortion of the
field in the cell and its vicinity.

In previous works �8,9� we have already shown that the
membrane is a site of high field amplification and that the
detailed geometry and electrical properties of the cell can
affect the accuracy of the predictions of the electric behavior.
In particular, we have shown that the low membrane conduc-
tivity �several orders of magnitude lower than those of the
cytoplasm and the physiological extracellular medium� im-
plies that most of the electric field and energy within the cell
are concentrated on the membrane. Therefore, the knowledge
of the electric field distribution within the cell membrane or
the equivalent transmembrane potential is of primary impor-
tance. This is especially so for erythrocyte rouleau under
radio frequency exposure, as the total energy of the cell sys-
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tem is varied and the internal electric field can play an im-
portant role in the formation or disaggregation of the
rouleau.

Note that in general attractive forces between electrically
polarized particles lead to the formation of chainlike aggre-
gates termed “pearl chains” by Schwan and co-workers
�10–13�, who proposed a theory based on dipole interactions
among spherical particles. This theory shows that the forma-
tion of pearl chains is characterized by a time constant pro-
portional to the square of the field strength and by a thresh-
old field which depends on the size and elastic properties of
the particles and the medium �10,12�. Since the induced di-
pole moment on a cell depends both on the volume and on
the square of the field strength, the threshold field to over-
come thermal agitation is proportional to R−3/2, where R
stands for the radius of the particles. This dependence has
been observed in spherical particles �14� as well as in bacte-
ria and in erythrocytes �15� �in these cases, R is the geomet-
ric mean of the major and minor semiaxes�. To induce ag-
gregation of erythrocytes Schwan �16� gives a threshold of
about 1000 V/m at 1 MHz. We are not aware of published
values for the threshold field at 1.8 GHz but it is likely to be
higher. Takashima and Schwan �13� confirm that threshold
values for 10 �m cells are about 1000 V/m, but for 10 nm
macromolecules the fields rise up to 1000 kV/m, of the same
order of the fields required for complete orientation due to
the existence of a typical dipole moment of 10–100 D.

A different approach was taken by Sauer �14,17�, who
evaluated the Maxwell stress tensor for two approaching
spherical particles, and by Foster and Sowers �18� who in-
troduced the membrane into the model and studied the elec-
trically induced force on two shelled spheres and the related
hydrodynamic problem of the rate of approach of the cells
using a numerical boundary element method.

The aim of the present paper is to perform a study of the
influence of an external EM field in a long rouleau of iden-
tical erythrocyte cells, and especially to quantify the effects
pertaining to a realistic model with a realistic shape of the
erythrocyte that cannot be accounted for by a simple dipole-
dipole interaction. We have selected an operating frequency
of 1.8 GHz and a normalized value of the electric field of
1 V/m as good representatives of typical values in recent
studies of biological effects and industrial applications in the
high-frequency range �19–22�. Our numerical calculations
can be extended readily for higher field strength values.

The layout of the paper is as follows. In Sec. II we briefly
discuss a realistic geometrical model for an erythrocyte cell
parametrized in terms of Jacobi elliptic functions. Section III
contains a detailed description of the finite element with
adaptive mesh numerical technique that has been used to
calculate the induced fields within the erythrocytes exposed
to a linearly polarized EM plane wave. In Sec. IV we analyze
the effects of erythrocyte mutual interactions in rouleau for-
mation. In particular we illustrate how the transmembrane
potential of an individual erythrocyte illuminated by the ex-
ternal EM field is modified by the close presence of neigh-
boring erythrocytes, and compare the total electric energy of
isolated cells with the total electric energy of the rouleau.
Although we will summarize our conclusions in the final
Sec. V, we anticipate here that the polarization of the external

EM field plays a fundamental role in the total energy varia-
tion of the cell system because field-induced aggregation is
favored along the field lines.

II. ERYTHROCYTE MODEL

The interaction of an external electromagnetic field with
biological cells has been the subject of numerous investiga-
tions, usually with simple cylindrical or spheroidal geom-
etries to model the cells. The revolution symmetry of these
geometries greatly simplifies the calculation of the different
quantities of interest, such as electric fields, transmembrane
potentials or polarizabilities. However, in order to gain a
good insight into the mechanisms of action of electromag-
netic fields �including athermal effects� more realistic models
must be used. In fact, we have previously shown the crucial
role played by the geometry of the cell model in the deter-
mination of the electric field, and we have also pointed out
that a uniformly shelled ellipsoid is a very crude approxima-
tion if we require a precise simulation of the bioeffects in the
transition from a normal to an ellipsoidal erythrocyte �23�.
More precise shapes, in turn, require highly refined calcula-
tion techniques with considerably higher computing times.

The human erythrocyte normal resting shape is a flattened
biconcave disk of approximately 8 �m in diameter. This par-
ticular shape provides the erythrocyte with the necessary
flexibility and deformability to traverse the microvasculature.
There are several methods to model the complicated eryth-
rocyte shape and deformations thereof. The surface of revo-
lution generated by a Cassini curve �24� is a good and fre-
quently used approximation to the real shape of the
erythrocyte cell �23,25�. Its main advantage is that the
Cassini curves have simple implicit �as a fourth degree poly-
nomial� and parametric �in terms of trigonometric functions�
representations; its main limitation is that a Cassini curve is
determined by two parameters which can be used to fit, say,
only the length and height of a real erythrocyte.

At the other end in complexity is the approach proposed
by Bloor and Wilson �26�, who use an elliptic partial differ-
ential equation in combination with a model for the surface
energy to produce a most realistic representation of the shape
of the membrane surface �incidentally, in this method shape
parameters are introduced through the boundary conditions�.

However, we do not find convenient to forsake the advan-
tages of a simple parametric representation, in particular con-
sidering that any further shape transformations are readily
amenable �for example, those used to model changes in
shape membranes which occur spontaneously when cells are
immersed in an aqueous environment under appropriate con-
ditions �27��. For this reason, in the present study we have
opted for a simple generalization of the model proposed by
Kuchel and Fackerell �28�, whereby the shape of a biconcave
erythrocyte is represented by a set of parametric equations in
terms of the sn�u ,m�, cn�u ,m�, and dn�u ,m� Jacobi elliptic
functions �29� with three free parameters.

Our model of the erythrocyte cell is formed by two media:
the membrane and the cytoplasm. The cytoplasm is a physi-
ological saline solution with a protein volume fraction of
0.26. The membrane will be represented by a shell of con-
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stant thickness �=8 nm that has a very low conductivity and
a frequency-independent relative permittivity �30,31�. The
cell is immersed in an external continuous medium �the ra-
diation region� formed by an electrolyte with the dielectric
properties of physiological saline. Table I shows the electri-
cal parameters for the membrane, cytoplasm and external
medium. These values are typical for the erythrocyte struc-
ture and have been extensively used in the literature �30–35�.

The cytoplasm is bounded by the surface

r�u,��

= „acn�u,m�cos �,acn�u,m�sin �, ± bsn�u,m�dn�u,m�… ,

�1�

u � �0,U�, � � �0,2�� ,

where the plus and minus signs correspond to the upper and
lower half of the cell, respectively, and where the three free
parameters are a, b and m. By putting �u ,��= �0,0� into Eq.
�1� we find that a= l /2, where l is the diameter of the eryth-
rocyte. The range �0,U� of the parameter u is determined by
the condition cn�U ,m�=0, which in turn yields b
=h0 / �sn�U ,m�dn�U ,m��, where 2h0 is the height of the
erythrocyte at its center. Finally, m can be fixed by the con-
dition hmax=bsn�umax,m�dn�umax,m�, where 2hmax is the
maximum height of the erythrocyte �reached at the value
umax of the variable u�. General expressions of these param-
eters in terms of elliptic integrals can be found in Ref. �28�.
The dimensions of the biconcave erythrocyte used in this
work are l=7.8 �m, h0=0.5 �m, and hmax=0.85 �m, which
correspond to a=3.9, b=1.616 69, and m=0.904 35. Finally,
we generated the uniform shell representing the membrane

by shifting the cytoplasm surface a constant distance � along
the normal to the surface at each point

r��u,�� = r�u,�� + �n�u,�� , �2�

where n�u ,�� is the outward unit normal to the surface given
by

n�u,�� = −

�r

�u
�

�r

��

� �r

�u
�

�r

��
� . �3�

The minus sign in Eq. �3� is necessary because as the vari-
able u increases from 0 to U, both x�u ,�� and y�u ,�� de-
crease from l /2 to 0. The three-dimensional �3D� erythrocyte
cell model obtained by this method, with the corresponding
dimensions and �for future reference� incident EM plane
wave polarizations can be seen in Fig. 1.

III. CALCULATION OF THE INTERNAL ELECTRIC
FIELD DISTRIBUTION AND TRANSMEMBRANE

POTENTIAL

In low shear flow conditions, the total energy of the eryth-
rocytes in the rouleau can be approximated as the sum of
three independent contributions: the membrane elastic en-
ergy, the adhesion energy and the cell basic electric energy.
Furthermore, in the aforementioned conditions the deforma-
tions of the erythrocytes �whose mechanical properties arise
from the elastic properties of its lipid bilayer and the under-
lying membrane skeleton� in the rouleau formation are very
small and can be safely omitted from the analysis.

The first contribution to the total energy has been studied
in detail by several authors �Bozic et al. �3�, Miao et al.
�36��, who used the area difference elasticity �ADE� model.
Similarly, Derganc et al. �4� and Seifert et al. �37� have ana-
lyzed the strength of adhesion between neighboring cells and
vesicles, respectively. In the present work we focus on the
variations of the total energy due to the third contribution,
i.e., to variations of the rouleau electric energy from the cell
resting transmembrane potential when the cells are exposed
to a linearly polarized external electromagnetic field. Implicit
in our subsequent calculations is the further reasonable as-

TABLE I. Relative permittivity � /�0, conductivity �, and loss
tangent for the cytoplasm, membrane and external continuous me-
dium at 1.8 GHz �see Ref. �35��.

Medium � /�0 � �S/m� Loss tangent

Cytoplasm 50 0.53 0.105 90

Membrane 9.04 1�10−6 1.1052�10−6

External medium 80 0.12 0.014 986

FIG. 1. �Color online� Dimensions and 3D
geometrical model used to shape the biconcave
erythrocyte ��=8 nm, l=7.8 �m, h0=0.5 �m,
hmax=0.85�m�. The polarization of the incident
EM plane wave is �a� electric and �b� magnetic.
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sumption that under the exposure to the external EM field
both the elastic and the adhesion energy contributions to the
rouleau energy remain unaltered �4,38�. Therefore, any varia-
tion in the total rouleau energy can be attributed to the inter-
action of the rouleau with this external EM field.

The cell basic electric energy is modified by the presence
of adjacent cells and by the fields induced in the membrane
and in the cytoplasm by the external field. We can obtain an
analytic estimate of this energy by a somewhat crude model
in which the erythrocyte is considered as a spherical shell of
thickness � whose radius R is chosen so that the volume of
the spherical erythrocyte be equal to the volume of the real
erythrocyte. The �complex� dipolar moment p induced in this
shelled sphere by an external field E is �39�

p = 4�R3�̂ext
�̂eff − �̂ext

�̂eff + 2�̂ext

E , �4�

where

�̂eff = �̂mem

� R

R − �
�3

+ 2
�̂cyt − �̂mem

�̂cyt + 2�̂mem

� R

R − �
�3

−
�̂cyt − �̂mem

�̂cyt + 2�̂mem

, �5�

and where �̂ext, �̂mem, and �̂cyt are the complex permittivities
�̂=�− i� /	 of the external medium, of the membrane and of
the cytoplasm, respectively. The interaction energy between
two such spheres is

W = −
1

4��ext

Re�p1p2
*�

r3 , �6�

where “Re” stands for the real part. For R=2.53 �m �i.e., an
sphere of 68 �m3, the volume of our realistic model�, tan-
gential spheres �i.e., r=2R� and an electric field of 1 V/m,
Eq. �6� yields an interaction energy W=−4.0�10−28 J.
However, if we disregard the interpenetration of the spheres
and place the induced dipoles at a distance equal to the dis-
tance between the centers of the erythrocytes in the rouleau
r=2hmax=1.7 �m the interaction energy is W=−1.0

FIG. 2. Mutual interaction between two erythrocytes. Variations of �a� the induced transmembrane potential at x=0 and �b� the field
within the cytoplasm as a function of the separation d at x=y=0. The external field of 1 V/m is parallel to the minor axis and the cells are
stacked along this direction, as is typical in rouleau formation.

FIG. 3. Variation of the electric field intensity along the major axis within �a� the membrane and �b� the cytoplasm of the central cell of
the rouleau �not shown in the insets� for different numbers n of cells of the rouleau. The external field is “electrically” polarized �i.e., parallel
to the minor axes of the cells�.
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�10−26 J. The numerical energy that we will obtain in Sec.
III for the analogous situation with the realistic model of the
erythrocyte �i.e., the difference between the continuous line
and the dashed line in Fig. 5�a� for n=2� is W=−6.6
�10−27 J. Since these calculations have been performed with
the same volume of dielectric material �except for the small
difference in the volume of the membrane�, the difference is
an estimate of the multipole and shape effects accounted for
by our realistic calculations.

In order to calculate the modified transmembrane poten-
tial and the electric energy we have to determine the electric
field distribution inside the uniform thickness membrane and
the cytoplasm of the erythrocyte. As the cell dimensions
��8 �m� are much smaller than the wavelength at the work-
ing frequency ��2 cm�, we can assume that the cell is ex-
posed to a uniform field. Therefore a quasistatic approxima-
tion holds and we can calculate the field distribution by
solving directly the Laplace equation.

This approach neglects the double-layer effects associated
to the presence and diffusion of counterions around the cell
surface, which can modify significantly the membrane poten-
tial induced by external fields especially at low frequencies
and when the conductivity of the external medium is low
�40�. More quantitatively, this approximation will be justified

whenever the two characteristic length scales of the system
�the Debye screening length 
D that measures the extension
of the counterion atmosphere and the distance � an ion can
diffuse during a field period� are smaller than the smallest
length in the structure �the membrane thickness ��. In a
symmetric medium of permittivity � and conductivity �,

D=	�D /� and �=	4D /	, where D is the ion diffusion
coefficient. At the physiological conditions and the fre-
quency of 1.8 GHz considered in this work and with a dif-
fusion coefficient D�10−9 m2/s the ratios are 
D /��0.3
and � /��0.08, thus validating our assumption.

Several researchers have used cell models based on
shelled spheres or spheroids that permit analytical solutions
for a variety of applications such as cell manipulation and
EM field microdosimetry studies �41,42�. However, this ana-
lytical approach has severe limitations because an explicit
solution of the Laplace equation usually requires a geometry
consisting of one or several uniform media separated by in-
terfaces which are constant-coordinate surfaces in certain
types of suitable coordinate systems. This requirement ex-
cludes other possible geometric configurations, and even for
spheroids the surface of the membrane has to be confocal
with the main spheroid, often producing a nonuniform mem-
brane thickness �31�.

FIG. 4. Variation of the electric field intensity in the membrane and in the cytoplasm along two perpendicular major axes of the central
cell of the rouleau �not shown in the insets� for different numbers n of cells in the rouleau. The external field is “magnetically” polarized. �a�
Electric field in the membrane as a function of the coordinate labeled x for z=0 in the accompanying inset; �b� electric field in the cytoplasm
as a function of the coordinate labeled x for z=0 in the accompanying inset; �c� electric field in the membrane as a function of the coordinate
labeled z for x=0 in the accompanying inset; and �d� electric field in the cytoplasm as a function of the coordinate labeled z for x=0 in the
accompanying inset.
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Therefore only numerical methods seem to be capable of
giving a sufficiently precise estimation of field values in re-
alistic cell shapes. But up to date very few studies of this
type have been reported �43,44�, the main reason being the
well-known difficulty in handling two regions—the cyto-
plasm and the membrane—of very different characteristic
length scales. Since a numerical solution of the Laplace
equation by a finite differences scheme ultimately involves
some kind of polynomial approximation on the nodes of a
convenient grid, the existence of a very small domain makes
it necessary either to use a very dense grid �with a prohibi-
tive cost in computing resources� or to resort to nonuniform
meshing methods. Hybrid numerical techniques are a natural
choice to overcome this difficulty �45�, and very recently Liu
et al. �46� have coupled the finite element method �FE� with
the boundary element method �BEM� to compute the eryth-
rocyte transmembrane potential in low frequency electric
fields. However, they apply this coupling method only to an
isolated erythrocyte cell.

In this paper we use a finite element technique �47,48�
with a variable density mesh to determine the electric field
intensity within the different layers of the cell. This method
has been proven to be a powerful tool for the calculation of
electric, magnetic and thermal fields. Although our adaptive
mesh calculation exhibits a higher algorithmic complexity
than the coupling method of Liu et al. �46�, our technique
can be readily applied to any number of neighboring eryth-
rocytes within an arbitrarily shaped radiation region, making
this approach perfectly suited for very accurate calculations
of the electric fields in erythrocyte rouleau.

The cells are exposed to a linearly polarized EM plane
wave of frequency 1.8 GHz propagating along the y axis,
with the E and H field vectors parallel to the z and x axes.
Two cases, the so-called electric polarization �where the
electric vector E is aligned with the minor axis of the eryth-
rocytes� and the so-called magnetic polarization �where the
electric vector E is aligned with a major axis of the erythro-
cytes� are separately considered �cf. Fig. 1�. The radiation
region is taken to be a cube in which the cells are immersed
and filled with the external medium and surrounded by per-
fectly matched layers �PML�. This setup provides a reflec-
tionless interface between the region of interest and the PML
layers at all incident angles �49�. We achieve a good com-
promise between accuracy and computing resources by ex-
tending the dimensions of the radiation region to the order of
four wavelengths in the external medium.

We set up an initial discretization of the object space into
finite elements by a Delaunay algorithm �50�. This algorithm
generates a mesh of tetrahedrons out of a set of node points
and ensures the necessary topological compatibility as well
as additional geometrical properties of the cell model. Once
the initial mesh is established, a shape function is chosen
inside each tetrahedron. With these shape functions we can
obtain an initial solution of the full Maxwell equations. The
values of the electric field at points inside each tetrahedron
are interpolated from the values at the vertices of the tetra-
hedron, which must be sufficiently small to give sufficiently
accurate initial values of the field inside. In order to reliably
identify and selectively refine the large field intensity regions
and large field-gradient regions �regions of high solution er-

ror� that are developed within the cell structure, we have
applied an adaptive finite element method �AFEM�. There
are different types of adaptive systems that have been devel-
oped for electromagnetic problems, and some are now in
reasonably widespread use �51–53�. In this work, we have
used a combined hp-type adaptive approach that indepen-
dently varies the two basic discretization parameters, the
sizes of elements within the mesh and the orders of elements
in a mesh. This approach has the possibility and potential of
realizing superior rates of solution error convergence com-
pared against those methods that utilize only pure h-type or
p-type adaption models �54–56�. The resulting �refined� ma-
trix equation for the field values at the mesh nodes is solved
iteratively. With this solution, we calculate the scattering pa-
rameters Sij of the reflected wave, and the process terminates
when the difference between the values of S11 and S22 in two
consecutive iterations is less than 10−6. We have found that
the final mesh to reach a uniformly accurate result for the
electric field E required 100 000 tetrahedra per cubic micron
of membrane and 1200 tetrahedra per cubic micron of cyto-
plasm. The calculation of the transmembrane potential is
straightforward: we just multiply the electric field in the
membrane by its thickness.

Similar FE calculations under the same EM field exposure
are then set up for stacked copies of the original biconcave
erythrocyte forming rouleau of up to ten cells. This FE nu-
merical technique has already been validated by the authors
in previous works with simpler spherical, cylindrical and
spheroidal geometries �9,23�. A typical computing time for a
rouleau of ten cells in a 3 GHz microprocessor is of the order
of 360 min.

IV. MUTUAL INTERACTIONS AND ERYTHROCYTE
ROULEAU ENERGY: ANALYSIS OF RESULTS

Although extensive research has been carried out on the
behavior of individual cells, much less effort has been de-
voted to the study of collective phenomena which may ap-
pear due to the electromagnetic properties of multiple cells
subjected to an electromagnetic field. Mutual interactions be-
tween cells may lead to a significant change in the field dis-
tribution within each cell, as it is shown in the following
analysis.

Figure 2 shows the interaction effects in the value of the
transmembrane potential and electric field within the cyto-
plasm as a function of the distance d between two erythro-
cyte neighbor cells. For cells stacked along the direction of
the external electric field, the depolarizing fields lead to
lower field intensity within the membrane and the cytoplasm
as the distance d decreases. Naturally, for higher values of d
the fields tend to the value for isolated erythrocytes. Note
that the transmembrane potential values are smaller than
those obtained when the erythrocyte is exposed to low fre-
quency electric fields �46�, because at high frequencies the
dominant effect is the ratio of the permittivity of the external
medium to the permittivity of the membrane, whereas at low
frequencies the dominant effect is the ratio of the corre-
sponding conductivities.

The variation of the electric field within a particular eryth-
rocyte due to mutual interactions is much more significant as
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the number of intervening erythrocytes increases. To illus-
trate this effect, in Figs. 3�a� and 3�b� we plot the variation of
the total field intensity along the major axis within the mem-
brane and within the cytoplasm of a “central” cell as a rou-
leau is formed by stacking symmetrically new cells above
and below the reference cell. The polarization of the external
field is parallel to the minor axes of the cells, and separate
curves correspond to the different values of n.

The corresponding results for the “magnetic” polarization
of the field are plotted in Fig. 4. Since in this case there is no
rotational symmetry around the field axis we present in sepa-
rate plots the variation of the field in the membrane and in
the cytoplasm along two perpendicular major axes of the
cell: first the variation with the coordinate labeled x in
the accompanying insets and second the variation with the
coordinate labeled z in the insets. Note that for Fig. 4�a� the
external field is approximately tangential to the membrane
along a large part of the surface and therefore the field
intensity exhibits very small variations with respect to the
external field. The field within the membrane has much more
significant variations in Fig. 4�c� but note that again when
the external field is tangential to the membrane surface at
z�3 �m the electric field in the membrane equals the exter-
nal field.

A comparison of Figs. 3 and 4 shows the influence of the
polarization of the incident electromagnetic field: if the ex-
ternal field E is parallel to the major axis of the cell, the
induced electric field in the membrane is lower than if the
external field E is parallel to the minor axis of the cell. Simi-
lar results are obtained for the cytoplasm.

Note that although the membrane has been considered to
be homogeneous in this latter case the field intensity at dif-
ferent points in the membrane varies very significantly,
which in turn induces correspondingly large variations in the
transmembrane potential. Thus, for the electric polarization
the induced transmembrane voltage varies monotonically
from a maximum of 70 nV at the center to 8 nV at the edge
of the cell. However, when the field is magnetically polarized
the maximum occurs at a point in the edge with minima at
the center and at the points where the external field is tan-
gential to the membrane surface. These results are in reason-
able agreement with the induced transmembrane voltage of
50 nV obtained by Foster and Schwan �57� with an spherical
model of diameter equal to the diameter of the erythrocyte,
and shows the role of a realistic model for the cell. We men-
tion in passing that these induced values are very far away
from the 100–300 mV that would lead to the destruction of
the membrane.

Our analysis also show the reduction of the field strength
in the membrane near the regions of closest approach. This

result is in agreement with the static calculations of Foster
and Sowers �18� for two shelled spheres. Although Foster
and Sowers point out that for their shelled spheres this effect
is rather modest, in our realistic calculations the effect de-
pends strongly on the polarization of the field and becomes
more significant as the number of erythrocytes increases.

As we stated in Sec. I and in Sec. III, our main purpose is
to evaluate the total electric energy involved in the formation
of rouleau and to compare this energy with the total electric
energy of isolated erythrocytes in the same external field. It
turns out �58� that in the quasistatic approximation the elec-
tric energy of the rouleau embedded in the external medium
can be written in terms of integrations extended only to the
cell volume �membrane and cytoplasm�

WE =
1

2

i=1

n ���ext − �cyt��
Vcyt

Ei,cyt · EextdV

+ ��ext − �mem��
Vmem

Ei,mem · EextdV
 , �7�

where the subindexes “cyt” and “mem” stand for cytoplasm
and membrane, respectively, and where n is the number of
cells in the rouleau. Note again the role of the polarization of
the external field in Eq. �7�: only the component of the in-
duced fields in the direction of the external field enter in the
calculation of the energy. We have evaluated the integrals in
Eq. �7� numerically using the field values for the cytoplasm
and the membrane discussed in the previous paragraphs.

Figure 5�a� shows the total electric energy for the rouleau
as a function of the number of rouleau cells. The applied
external field has “electric” polarization �external field paral-
lel to the minor axis of the cell�. A significant reduction of
the total electric energy of the stack is found as the rouleau
gets longer. This reduction is a consequence of the decrease
in the induced fields already discussed. In Fig. 5�a� the rou-
leau energy is also compared with the energy of the same
number of isolated erythrocytes �the dashed straight line�.
Therefore, we conclude that an external field “electrically”
polarized favors the rouleau formation, because the total en-
ergy system decreases.

However, this conclusion does not hold for the case where
the external field has “magnetic” polarization �that is, the
electric field is parallel to the cell major axis�. Figure 5�b�
shows the total electric energy of the rouleau for this polar-
ization of the external field. Indeed, by comparing Figs. 5�a�
and 5�b� we find two significant differences. First, for the
same number of cells, the total electric energy of the rouleau
formed under exposure of a polarized external field parallel

FIG. 5. Comparison between the total electric
energy of an erythrocyte rouleau and the total en-
ergy of the same number of isolated erythrocytes
in the same field of 1 V/m when �a� the external
field is parallel to the minor axes of the cells, and
�b� the external field is parallel to the major axes
of the cells.
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to the minor axis has a significant lower value compared to
the rouleau formed under a polarized external field parallel to
the major axis, due to the lower electric fields induced in the
membrane and cytoplasm of each erythrocyte as the number
of rouleau cells increases �Fig. 3�. The second and most im-
portant difference is that the total rouleau energy is higher
than the energy of a group of identical number of isolated
erythrocytes exposed to the same external field. Therefore, it
can be concluded that an external field that is polarized par-
allel to the major axis could favor the disaggregation of the
rouleau, because the total system energy would increase.

The calculated energy differences for both orientations of
the electric field as shown in Figs. 5�a� and 5�b� are in quali-
tative agreement with an interpretation in terms of the in-
duced dipoles in the erythrocytes that form the rouleau. The
interaction energy between two electric dipoles with �com-
plex� dipole moments p1 at r1 and p2 at r2 with arbitrary
orientations is

W =
Re�p1p2

*�
8��extr

3 �cos � − 3 cos 
1 cos 
2� , �8�

where � is the angle between the �real� moments and 
1 and

2 the angles that they form with r=r2−r1. If the external
field is applied along the minor axis of the cell, the induced
dipoles are aligned parallel to the rouleau axis and therefore
their interaction energy is negative. Conversely, if the
applied field is parallel to the major axis of the erythrocytes,
the induced dipoles are arranged perpendicularly to the
rouleau direction, thus giving a positive contribution to the
total energy of the rouleau with respect to the energy of free
erythrocytes.

V. CONCLUSIONS

In the present paper we have calculated numerically the
effect of an electromagnetic field on the electric field distri-
bution in the membrane and cytoplasm of erythrocytes.
These cells have been modeled as two-compartment dielec-
tric particles with a realistic biconcave shapes obtained by an
appropriate parametrization based on the dimensions of hu-
man erythrocytes. Our numerical approach has been a FE
technique, with adaptive nonuniform meshing to take into
account the small thickness of the membrane, producing a
uniformly accurate computation of internal fields. Using this
method we have studied the influence of neighboring cells on
the electric field distribution in a given erythrocyte during
rouleau formation.

Although our analysis has some simplifying assumptions
�essentially a rouleau composed of identical nondeformed

erythrocytes and a negligible influence of counterion double
layer�, the results clearly show an influence of the number of
stacked cells on the value of the electric field in the mem-
brane and in the cytoplasm of the central cell of the rouleau.
This influence has a different sign for the cases of orientation
of the electric field along the minor and along the major axes
of the erythrocyte. The general pattern can be understood as
a result of the interaction between the induced dipoles in
neighboring cells polarized by the electric field, although we
have shown that quantitative results require careful numeri-
cal calculations.

The comparison of the energies of free erythrocytes and
aggregated erythrocytes revealed that the rouleau formation
is energetically favorable when the field orientation is along
the minor axis of the erythrocytes and unfavorable when the
orientation is parallel to their major axis, i.e., as we antici-
pated in Sec. I field-induced aggregation is favored along the
field lines. For the size of the erythrocyte considered in this
analysis, the energy differences found for an external field of
1 V/m are much smaller than the adhesion energy between
normal aggregated erythrocytes �2�. However, it has to be
taken into account that the energy is proportional to the
square of the field intensity and therefore higher fields can
affect erythrocyte aggregation. We also recall that although
in our analysis the membrane has been considered as an ho-
mogeneous dielectric shell, the electric field in the membrane
and the ensuing transmembrane potential varies significantly.
However, the cell membrane is a very complex structure and
inhomogeneities such as proteins or ionic channels can en-
hance the electric field, leading to higher field spots and
therefore modifying the aggregation forces. Taking into ac-
count these dynamical effects in a realistic calculation is a
challenging problem.

The model developed herein gives insight into electrical
influences between cells immersed in an electromagnetic
field which have not been previously addressed because of
the limitations of analytical approaches and the difficulties of
accurate numerical computations. Application of this model
and refinements thereof may be of potential value in under-
standing possible hazards or beneficial uses of electromag-
netic field radiation.
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